অনুপাত, সদৃশতা ও প্রতিসমতা

নবম-দশম শ্রেণি (মাধ্যমিক) - গণিত - | NCTB BOOK
1k
1k

দুইটি রাশির তুলনা করার জন্য এদের অনুপাত বিবেচনা করা হয়। অনুপাত নির্ণয়ের জন্য রাশি দুইটি একই এককে পরিমাপ করতে হয়। এ সম্পর্কে বীজগণিতে বিস্তারিত আলোচনা করা হয়েছে।

এ অধ্যায় শেষে শিক্ষার্থীরা ---

  • জ্যামিতিক অনুপাত সম্পর্কে ব্যাখ্যা করতে পারবে।
  • রেখাংশের অন্তর্বিভক্তি ব্যাখ্যা করতে পারবে।
  • অনুপাত সম্পর্কিত উপপাদ্যগুলো যাচাই ও প্রমাণ করতে পারবে।
  • সদৃশতার অনুপাত সংক্রান্ত উপপাদ্যগুলো যাচাই ও প্রমাণ করতে পারবে।
  • প্রতিসমতার ধারণা ব্যাখ্যা করতে পারবে।
  • হাতে-কলমে বাস্তব উপকরণের সাহায্যে রেখা ও ঘূর্ণন প্রতিসমতা যাচাই করতে পারবে।

 

অনুপাত ও সমানুপাতের ধর্ম (Properties of Ratio and Proportion)

(i) a : b = x : y এবং c : d = x : y হলে, a : b = c : d

(ii) a : b = b : a হলে, a = b

(iii) a : b = x : y হলে, b : a = y : x (ব্যস্তকরণ)

(iv) a : b = x : y হলে, a : x = b : y (একান্তরকরণ)

(v) a : b = c : d হলে, ad = bc (আড়গুণন)

(vi) a : b = x : y হলে, a + b : b = x + y : y (যোজন)

এবং a - b : b = x - y : y (বিয়োজন)

(vii) ab=cd হলে, a+ba-b=c+dc-d (যোজন ও বিয়োজন)

 

জ্যামিতিক সমানুপাত (Geometric proportions)

আমরা ত্রিভুজক্ষেত্রের ক্ষেত্রফল নির্ণয় করতে শিখেছি। এ থেকে দুইটি প্রয়োজনীয় অনুপাতের ধারণা তৈরি করা যায়।

১. দুইটি ত্রিভুজক্ষেত্রের উচ্চতা সমান হলে, এদের ক্ষেত্রফল ও ভূমি সমানুপাতিক।

মনে করি, ত্রিভুজক্ষেত্র ABC ও DEF এর ভূমি যথাক্রমে BC = a, EF = d এবং উভয় ক্ষেত্রের উচ্চতা h ।

সুতরাং, ত্রিভুজক্ষেত্র ABC এর ক্ষেত্রফল =12×a×h, ত্রিভুজক্ষেত্র DEF এর ক্ষেত্রফল =12×d×h

অতএব, ত্রিভুজক্ষেত্র ABC এর ক্ষেত্রফল: ত্রিভুজক্ষেত্র DEF এর ক্ষেত্রফল

 

২. দুইটি ত্রিভুজক্ষেত্রের ভূমি সমান হলে, এদের ক্ষেত্রফল ও উচ্চতা সমানুপাতিক।

মনে করি, ত্রিভুজক্ষেত্র ABC ও DEF এর উচ্চতা যথাক্রমে AP = h, DQ = k এবং উভয় ক্ষেত্রের ভূমি b ।

সুতরাং, ত্রিভুজক্ষেত্র ABC এর ক্ষেত্রফল =12×d×h, ত্রিভুজক্ষেত্র DEF এর ক্ষেত্রফল =12×a×k

অতএব, ত্রিভুজক্ষেত্র ABC এর ক্ষেত্রফল: ত্রিভুজক্ষেত্র DEF এর ক্ষেত্রফল

 

উপপাদ্য ২৮. ত্রিভুজের যেকোনো বাহুর সমান্তরাল সরলরেখা ঐ ত্রিভুজের অপর বাহুদ্বয়কে বা এদের বর্ধিতাংশদ্বয়কে সমান অনুপাতে বিভক্ত করে।

বিশেষ নির্বচন: ABC ত্রিভুজের BC বাহুর সমান্তরাল DE রেখাংশ AB ও AC বাহুদ্বয়কে (চিত্র-১) অথবা এদের বর্ধিতাংশদ্বয়কে (চিত্র-২) যথাক্রমে D ও E বিন্দুতে ছেদ করেছে। প্ৰমাণ করতে হবে যে, AD : DB = AE : EC 

অঙ্কন : B, E এবং C, D যোগ করি।

প্ৰমাণ :

 

অনুসিদ্ধান্ত ১. ABC ত্রিভুজের BC বাহুর সমান্তরাল কোনো রেখা যদি AB ও AC বাহুকে যথাক্রমে D ও E বিন্দুতে ছেদ করে, তবে ABAD=ACAE এবং ABBD=ACCE হবে।

 

অনুসিদ্ধান্ত ২. ত্রিভুজের কোনো বাহুর মধ্যবিন্দু দিয়ে অঙ্কিত অপর এক বাহুর সমান্তরাল রেখা তৃতীয় বাহুকে সমদ্বিখণ্ডিত করে।

 

উপপাদ্য ২৮ এর বিপরীত প্রতিজ্ঞাও সত্য। অর্থাৎ কোনো সরলরেখা একটি ত্রিভুজের দুই বাহুকে অথবা এদের বর্ধিতাংশদ্বয়কে সমান অনুপাতে বিভক্ত করলে উক্ত সরলরেখা ত্রিভুজটির তৃতীয় বাহুর সমান্তরাল হবে। নিচে প্রতিজ্ঞাটি প্রমাণ করা হলো।

 

উপপাদ্য ২৯. কোনো সরলরেখা একটি ত্রিভুজের দুই বাহুকে অথবা তাদের বর্ধিতাংশদ্বয়কে সমান অনুপাতে বিভক্ত করলে উক্ত সরলরেখা ত্রিভুজটির তৃতীয় বাহুর সমান্তরাল।

বিশেষ নির্বচন : DE রেখাংশ ABC ত্রিভুজের AB ও AC বাহুদ্বয়কে অথবা এদের বর্ধিতাংশদ্বয়কে সমান অনুপাতে বিভক্ত করেছে।

অর্থাৎ AD : DB = AE : EC

প্রমাণ করতে হবে যে, DE এবং BC সমান্তরাল।

অঙ্কন : B, E এবং C, D যোগ করি।

প্ৰমাণ : 

 

উপপাদ্য ৩০. ত্রিভুজের যেকোনো কোণের অন্তসমদ্বিখণ্ডক বিপরীত বাহুকে উক্ত কোণ সংলগ্ন বাহুদ্বয়ের অনুপাতে অন্তর্বিভক্ত করে।

বিশেষ নির্বচন : মনে করি, AD রেখাংশ △ABC এর অন্তঃস্থ ∠A কোণকে সমদ্বিখণ্ডিত করে BC বাহুকে D বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, BD : DC = BA : AC

অঙ্কন : DA রেখাংশের সমান্তরাল করে C বিন্দু দিয়ে CE রেখাংশ অঙ্কন করি, যেন তা বর্ধিত BA বাহুকে E বিন্দুতে ছেদ করে।

 

উপপাদ্য ৩১. ত্রিভুজের যেকোনো বাহু অপর দুই বাহুর অনুপাতে অন্তর্বিভক্ত হলে, বিভাগ বিন্দু থেকে বিপরীত শীর্ষ বিন্দু পর্যন্ত অঙ্কিত রেখাংশ উক্ত শীর্ষকোণের সমদ্বিখণ্ডক হবে।

বিশেষ নির্বচন : মনে করি, ABC ত্রিভুজের A বিন্দু থেকে অঙ্কিত AD সরলরেখাংশ BC বাহুকে D বিন্দুতে এরূপে অন্তঃস্থভাবে বিভক্ত করেছে যে, BD : DC = BA : AC । 

প্রমাণ করতে হবে যে, AD রেখাংশ ∠BAC এর সমদ্বিখণ্ডক অর্থাৎ, ∠BAD = ∠CAD

অঙ্কন : DA রেখাংশের সমান্তরাল করে C বিন্দু দিয়ে CE রেখাংশ অঙ্কন করি, যেন তা বর্ধিত BA বাহুকে E বিন্দুতে ছেদ করে।

প্ৰমাণ :

 

অতএব, ∠BAD = ∠CAD [ধাপ ২ থেকে]

 AD রেখাংশ ∠BAC এর সমদ্বিখণ্ডক।

 

 

সদৃশতা (Similarity)

সপ্তম শ্রেণিতে ত্রিভুজের সর্বসমতা ও সদৃশতা নিয়ে আলোচনা করা হয়েছে। সাধারণভাবে, সর্বসমতা সদৃশতার বিশেষ রূপ। দুইটি চিত্র সর্বসম হলে সেগুলো সদৃশ; তবে চিত্র দুইটি সদৃশ হলে সেগুলো সর্বসম নাও হতে পারে।

সদৃশকোণী বহুভুজ : সমান সংখ্যক বাহুবিশিষ্ট দুইটি বহুভুজের একটির কোণগুলো যদি ধারাবাহিকভাবে অপরটির কোণগুলোর সমান হয়, তবে বহুভুজ দুইটিকে সদৃশকোণী (equiangular) বলা হয়। 

উপরের চিত্রে আমরা লক্ষ করি যে, ABCD আয়ত ও PQRS বর্গ সদৃশকোণী। কারণ, উভয় চিত্রে বাহুর সংখ্যা 4 এবং আয়তের কোণগুলো ধারাবাহিকভাবে বর্গটির কোণগুলোর সমান (সবগুলো কোণ সমকোণ)। কিন্তু চিত্রগুলোর অনুরূপ কোণগুলো সমান হলেও অনুরূপ বাহুগুলোর অনুপাত সমান নয়। ফলে সেগুলো সদৃশও নয়। ত্রিভুজের ক্ষেত্রে অবশ্য এরকম হয় না। দুইটি ত্রিভুজের শীর্ষ বিন্দুগুলোর কোণ মিলকরণের ফলে সদৃশতার সংজ্ঞায় উল্লেখিত শর্ত দুইটির একটি সত্য হলে অপরটিও সত্য হয় এবং ত্রিভুজ দুইটি সদৃশও হয়। অর্থাৎ, দুইটি সদৃশ ত্রিভুজ সর্বদা সদৃশকোণী এবং দুইটি সদৃশকোণী ত্রিভুজ সর্বদা সদৃশ।

দুইটি ত্রিভুজ সদৃশকোণী হলে এবং এদের কোনো এক জোড়া অনুরূপ বাহু সমান হলে ত্রিভুজদ্বয় সর্বসম হয়। দুইটি সদৃশকোণী ত্রিভুজের অনুরূপ বাহুগুলোর অনুপাত ধ্রুবক। নিচে এ সংক্তান্ত উপপাদ্যের প্রমাণ দেওয়া হলো।

 

উপপাদ্য ৩২. দুইটি ত্রিভুজ সদৃশকোণী হলে এদের অনুরূপ বাহুগুলো সমানুপাতিক।

বিশেষ নির্বচন : মনে করি, ABC ও DEF ত্রিভুজদ্বয়ের ∠A = ∠D, LB = LE এবং ∠C = ∠FI

প্রমাণ করতে হবে যে, ABDE=ACDF=BCEF

অঙ্কন : ABC ও DEF ত্রিভুজদ্বয়ের প্রত্যেক অনুরূপ বাহুযুগল অসমান বিবেচনা করি। AB বাহুতে P বিন্দু এবং AC বাহুতে Q বিন্দু নিই যেন AP = DE এবং AQ - DF হয়। P ও Q যোগ করে অঙ্কন সম্পন্ন করি।

প্ৰমাণ :

উপপাদ্য ৩২ এর বিপরীত প্রতিজ্ঞাটিও সত্য।

 

উপপাদ্য ৩৩. দুইটি ত্রিভুজের বাহুগুলো সমানুপাতিক হলে অনুরূপ বাহুর বিপরীত কোণগুলো পরস্পর সমান।

অঙ্কন: △ABC ও △DEF এর প্রত্যেক অনুরূপ বাহুযুগল অসমান বিবেচনা করি। AB বাহুতে P বিন্দু এবং AC বাহুতে Q বিন্দু নিই যেন AP DE এবং AQ = DF হয়। P ও Q যোগ = করে অঙ্কন সম্পন্ন করি।

 

উপপাদ্য ৩৪. দুইটি ত্রিভুজের একটির এক কোণ অপরটির এক কোণের সমান হলে এবং সমান সমান কোণ সংলগ্ন বাহুগুলো সমানুপাতিক হলে ত্রিভুজদ্বয় সদৃশ।

অঙ্কন : △ABC ও △DEF এর প্রত্যেক অনুরূপ বাহুযুগল অসমান বিবেচনা করি। AB বাহুতে P বিন্দু এবং AC বাহুতে Q বিন্দু নিই যেন AP DE এবং AQ = DF হয়। P ও Q যোগ = করে অঙ্কন সম্পন্ন করি।

প্ৰমাণ:

 

উপপাদ্য ৩৫. দুইটি সদৃশ ত্রিভুজক্ষেত্রের ক্ষেত্রফলদ্বয়ের অনুপাত এদের যেকোনো দুই অনুরূপ বাহুর উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফলদ্বয়ের অনুপাতের সমান।

বিশেষ নির্বচন: মনে করি, △ABC ও △DEF ত্রিভুজদ্বয় সদৃশ এবং এদের অনুরূপ বাহু BC ও EF। প্রমান করতে হবে যে, ABC : DEF = BC2 : EF2

অঙ্কন : BC ও EF এর উপর যথাক্রমে AG ও DH লম্ব আঁকি । মনে করি AG = h, DH = p ।

প্ৰমাণ :

 

নির্দিষ্ট অনুপাতে রেখাংশের বিভক্তিকরণ

সমতলে দুইটি ভিন্ন বিন্দু A ও B এবং m ও n যেকোনো স্বাভাবিক সংখ্যা হলে স্বীকার করে নিই যে, রেখায় এমন অনন্য বিন্দু X আছে যে, X বিন্দুটি A ও B বিন্দুর অন্তর্বর্তী এবং AX : XB = m : n ।

ওপরের চিত্রে, AB রেখাংশ X বিন্দুতে m : n অনুপাতে অন্তর্বিভক্ত হয়েছে। তাহলে, AX : XB = m : n

 

সম্পাদ্য ১২. কোনো রেখাংশকে একটি নির্দিষ্ট অনুপাতে অন্তর্বিভক্ত করতে হবে।

বিশেষ নির্বচন : মনে করি, AB রেখাংশকে m : n অনুপাতে অন্তর্বিভক্ত করতে হবে।

অঙ্কন : A বিন্দুতে যেকোনো কোণ ZBAX অঙ্কন করি এবং AX রশ্মি থেকে পরপর AE = m, এবং EC = n অংশ কেটে নিই। B, C যোগ করি। E বিন্দু দিয়ে CB এর সমান্তরাল ED রেখাংশ অঙ্কন করি যা AB কে D বিন্দুতে ছেদ করে। তাহলে AB রেখাংশ D বিন্দুতে m : n অনুপাতে অন্তর্বিভক্ত হলো।

প্রমাণ : যেহেতু DE রেখাংশ ABC ত্রিভুজের এক বাহু BC
এর সমান্তরাল,

 AD : DB = AE : EC = m : n

কাজ : বিকল্প পদ্ধতিতে কোনো রেখাংশকে নির্দিষ্ট অনুপাতে অন্তর্বিভক্ত কর।

 

উদাহরণ ১. 7 সে.মি. দৈর্ঘ্যের একটি রেখাংশকে 3 : 2 অনুপাতে অন্তর্বিভক্ত কর।

সমাধান : যেকোনো একটি রশ্মি AG আঁকি এবং AG থেকে 7 সে.মি. সমান রেখাংশ AB নিই। A বিন্দুতে যেকোনো কোণ ∠BAX অঙ্কন করি। AX রশ্মি থেকে AE = 3 সে.মি. কেটে নিই এবং EX থেকে EC 2 সে.মি. কেটে নিই । B, C যোগ করি। E বিন্দুতে ∠ACB এর সমান ∠AED অঙ্কন করি যার ED রেখা AB কে D বিন্দুতে ছেদ করে। তাহলে AB রেখাংশ D বিন্দুতে 3 : 2 অনুপাতে অন্তর্বিভক্ত হলো।

 

 

 

কাজ : একটি নির্দিষ্ট ত্রিভুজের সদৃশ একটি ত্রিভুজ অঙ্কন কর যার বাহুগুলো মূল ত্রিভুজের বাহুগুলোর 35 গুণ৷

 

 

প্রতিসমতা (Symmetry)

প্রতিসমতা একটি প্রয়োজনীয় জ্যামিতিক ধারনা যা প্রকৃতিতে বিদ্যমান এবং যা আমাদের কর্মকান্ডে প্রতিনিয়ত ব্যবহার করে থাকি। প্রতিসমতার ধারনাকে শিল্পী, কারিগর, ডিজাইনার, ছুতাররা প্রতিনিয়ত ব্যবহার করে থাকেন। গাছের পাতা, ফুল, মৌচাক, ঘরবাড়ি, টেবিল, চেয়ার সব কিছুর মধ্যে প্রতিসমতা বিদ্যমান। যদি কোনো সরলরেখা বরাবর কোনো চিত্র ভাঁজ করলে তার অংশ দুইটি সম্পূর্ণভাবে মিলে যায় সেক্ষেত্রে সরলরেখাটিকে প্রতিসাম্য রেখা বলা হয়।

উপরের চিত্রগুলোর প্রতিটির প্রতিসাম্য রেখা রয়েছে।

কাজ :

ক) 

সুমি কাগজ কেটে উপরের চিত্রের ডিজাইন তৈরি করেছে। চিত্রে প্রতিসম রেখাসমূহ চিহ্নিত কর। এর কয়টি প্রতিসাম্য রেখা
রয়েছে?

খ) ইংরেজি বর্ণমালার যে সকল বর্ণের প্রতিসাম্য রেখা রয়েছে সেগুলো লিখে প্রতিসাম্য রেখা চিহ্নিত কর।

 

সুষম বহুভুজের প্রতিসাম্য রেখা (Lines of symmetry of a regular polygon)

বহুভুজ কতকগুলো রেখাংশ দ্বারা আবদ্ধ চিত্র। বহুভুজের রেখাংশগুলোর দৈর্ঘ্য সমান ও কোণগুলো সমান হলে একে সুষম বহুভুজ বলা হয়। ত্রিভুজ হলো সবচেয়ে কম সংখ্যক রেখাংশ দিয়ে গঠিত বহুভুজ। সমবাহু ত্রিভুজ হলো তিন বাহু বিশিষ্ট সুষম বহুভুজ। সমবাহু ত্রিভুজের বাহু ও কোণগুলো সমান। চার বাহুবিশিষ্ট সুষম বহুভুজ হলো বর্গক্ষেত্র। বর্গক্ষেত্রের বাহু ও কোণগুলো সমান। অনুরূপভাবে, সুষম পঞ্চভুজ ও সুষম ষড়ভুজের বাহু ও কোণগুলো সমান।

প্রত্যেক সুষম বহুভুজ একটি প্রতিসম চিত্র। সুতরাং এদের প্রতিসাম্য রেখার সম্পর্কে জানা আবশ্যক। সুষম বহুভুজের অনেক বাহুর পাশাপাশি একাধিক প্রতিসাম্য রেখা রয়েছে।

 

প্রতিসমতার ধারনার সাথে আয়নার প্রতিফলনের সম্পর্ক রয়েছে। কোনো জ্যামিতিক চিত্রের প্রতিসাম্য রেখা তখনই থাকে, যখন তার অর্ধাংশের প্রতিচ্ছবি বাকি অর্ধাংশের সাথে মিলে যায়। এজন্য প্রতিসাম্য রেখা নির্ণয়ে কাল্পনিক আয়নার অবস্থান রেখার সাহায্য নেওয়া হয়। রেখা প্রতিসমতাকে প্রতিফলন প্রতিসমতাও বলা হয়।

 

 

 

ঘূর্ণন প্রতিসমতা (Rotational symmetry)

কোনো নির্দিষ্ট বিন্দুর সাপেক্ষে ঘূর্ণনের ফলে বস্তুর আকৃতি ও আকারের পরিবর্তন হয় না। তবে বস্তুর বিভিন্ন অংশের অবস্থানের পরিবর্তন হয়। ঘূর্ণনের ফলে বস্তুর নতুন অবস্থানে বস্তুর আকৃতি ও আকার আদি অবস্থানের ন্যায় একই হলে আমরা বলি বস্তুটির ঘূর্ণন প্রতিসমতা রয়েছে। যেমন, সাইকেলের চাকা, সিলিং ফ্যান, বর্গ ইত্যাদি। একটি সিলিং ফ্যানের পাখাগুলোর ঘূর্ণনের ফলে একাধিকবার মূল অবস্থানের সাথে মিলে যায়। পাখাগুলো ঘড়ির কাঁটার দিকেও ঘুরতে পারে আবার বিপরীত দিকেও ঘুরতে পারে। সাইকেলের চাকা ঘড়ির কাঁটার দিকেও ঘুরতে পারে, আবার বিপরীত দিকেও ঘুরতে পারে। ঘড়ির কাঁটার বিপরীত দিকে ঘূর্ণনকে ধনাত্মক দিক হিসেবে ধরা হয়।

যে বিন্দুর সাপেক্ষে বস্তুটি ঘোরে তা হলো ঘূর্ণন কেন্দ্র। ঘূর্ণনের সময় যে পরিমান কোণে ঘোরে তা হলো ঘূর্ণন কোণ। একবার পূর্ণ ঘূর্ণনের কোণের পরিমান 360°, অর্ধ ঘূর্ণনের কোণের পরিমান 180° ।

চিত্রে চার পাখা বিশিষ্ট ফ্যানের 90° করে ঘূর্ণনের ফলে বিভিন্ন অবস্থান দেখানো হয়েছে। লক্ষ করি, একবার পূর্ণ ঘূর্ণনে ঠিক চারটি অবস্থানে (90°, 180°, 270°, 360° কোণে ঘূর্ণনের ফলে) ফ্যানটি দেখতে হুবহু একই রকম। এজন্য বলা হয় ফ্যানটির ঘূর্ণন প্রতিসমতার মাত্রা 4।

ঘূর্ণন প্রতিসমতার অন্য একটি উদাহরণ নেয়া যায়। একটি বর্গের কর্ণ দুইটির ছেদবিন্দুকে ঘূর্ণন কেন্দ্ৰ ধরি। ঘূর্ণন কেন্দ্রের সাপেক্ষে বর্গটির এক-চতুর্থাংশ ঘূর্ণনের ফলে যেকোনো কৌণিক বিন্দুর অবস্থান দ্বিতীয় চিত্রের ন্যায় হবে। এভাবে চারবার এক-চতুর্থাংশ ঘূর্ণনের ফলে বর্গটি আদি অবস্থানে ফিরে আসে। বলা হয়, বর্গের 4 মাত্রার ঘূর্ণন প্রতিসমতা রয়েছে।

লক্ষ করি, যেকোনো চিত্র একবার পূর্ণ ঘূর্ণনের ফলে আদি অবস্থানে ফিরে আসে। তাই যেকোনো জ্যামিতিক চিত্রের 1 মাত্রার ঘূর্ণন প্রতিসমতা রয়েছে।

ঘূর্ণন প্রতিসমতা নির্ণয়ের ক্ষেত্রে নিচের বিষয়গুলো লক্ষ রাখতে হবে :

   ক) ঘূর্ণন কেন্দ্ৰ

   খ) ঘুর্ণন কোণ

   গ) ঘূর্ণনের দিক

   ঘ) ঘূর্ণন প্রতিসমতার মাত্রা

কাজ : 

ক) তোমার চারপাশের পরিবেশ থেকে 5 টি সমতলীয় বস্তুর উদাহরণ দাও যাদের ঘূর্ণন প্রতিসমতা রয়েছে।

খ) নিচের চিত্রের ঘূর্ণন প্রতিসমতা নির্ণয় কর।

 

রেখা প্রতিসমতা ও ঘূর্ণন প্রতিসমতা (Line symmetry and rotational symmetry)

আমরা দেখেছি যে, কিছু জ্যামিতিক চিত্রের শুধু রেখা প্রতিসমতা রয়েছে, কিছুর শুধু ঘূর্ণন প্রতিসমতা রয়েছে। আবার কোনো কোনো চিত্রের রেখা প্রতিসমতা ও ঘূর্ণন প্রতিসমতা উভয়ই বিদ্যমান। বর্গের যেমন চারটি প্রতিসাম্য রেখা রয়েছে, তেমনি 4 মাত্রার ঘূর্ণন প্রতিসমতা রয়েছে।

বৃত্ত একটি আদর্শ প্রতিসম চিত্র। বৃত্তকে এর কেন্দ্রের সাপেক্ষে যে কোনো কোণে ও যেকোনো দিকে ঘুরালে এর অবস্থানের পরিবর্তন লক্ষ করা যায় না। অতএব, বৃত্তের ঘূর্ণন প্রতিসমতার মাত্রা অসীম। একই সময় বৃত্তের কেন্দ্রগামী যেকোনো রেখা এর প্রতিসাম্য রেখা। সুতরাং, বৃত্তের অসংখ্য প্রতিসাম্য রেখা রয়েছে।

কাজ : ইংরেজি বর্ণমালার কয়েকটি বর্ণের রেখা প্রতিসমতা ও ঘূর্ণন প্রতিসমতা নির্ধারন কর এবং নিচের সারণিটি পূরণ কর: (একটি করে দেখানো হল)

বর্ণ বর্ণ রেখা প্রতিসমতাপ্রতিসাম্য রেখার সংখ্যা ঘূর্ণন প্রতিসমতাঘূর্ণন প্রতিসমতার মাত্রা
Zনেই0হ্যাঁ2
H    
O    
E    
C    
common.content_added_and_updated_by

# বহুনির্বাচনী প্রশ্ন

নিচের উদ্দীপকটি পড় এবং নিচের প্রশ্নের উত্তর
টপ রেটেড অ্যাপ

স্যাট অ্যাকাডেমী অ্যাপ

আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।

ভিডিও
লাইভ ক্লাস
এক্সাম
ডাউনলোড করুন
Promotion