Processing math: 100%

গাণিতিক মডেল তৈরি

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত উচ্চতর গণিত – ২য় পত্র | - | NCTB BOOK
294
294

গাণিতিক মডেল তৈরি (Formulation of Mathematical Model)

যোগাশ্রয়ী প্রোগ্রামের সমস্যা সমাধানের প্রথম ধাপ হলো সমস্যাটির জন্য একটি সুনির্দিষ্ট গাণিতিক মডেল তৈরি করা। গাণিতিক মডেলটি তৈরি করতে গেলে কিছু ধাপ অনুসরণ করতে হয় যা সমস্যার নির্দিষ্ট উপাদানগুলোকে গাণিতিকভাবে উপস্থাপন করে। গাণিতিক মডেল তৈরি করার মূল ধাপগুলো নিম্নরূপ:


  1. লক্ষ্য ফাংশন নির্ধারণ (Define the Objective Function)
    • প্রথমেই সমস্যার লক্ষ্য কী তা নির্ধারণ করতে হবে, যা সর্বাধিক (maximize) বা সর্বনিম্ন (minimize) করতে হবে। লক্ষ্য ফাংশন একটি লিনিয়ার সমীকরণের মাধ্যমে প্রকাশ করা হয়, যেখানে ভেরিয়েবলগুলোকে গুণ করে যোগফল বা বিয়োগফল হিসাবে লেখা হয়।
    • উদাহরণ: যদি একটি কোম্পানির লক্ষ্য মুনাফা সর্বাধিক করা হয়, তাহলে লক্ষ্য ফাংশন হবে:
      Z=c1x1+c2x2++cnxn
      যেখানে, Z হলো লক্ষ্য ফাংশন এবং c1,c2,,cn হলো মুনাফার গুণফল।
  2. প্রয়োজনীয় ভেরিয়েবল নির্ধারণ (Define the Decision Variables)
    • সমস্যায় কোন উপাদান বা প্রয়োজনীয় পরিমাণ পরিবর্তনশীল হতে পারে, তা নির্ধারণ করতে হবে। ভেরিয়েবলগুলোকে লক্ষ্য ফাংশনের গাণিতিক গঠনে এবং সীমাবদ্ধতায় ব্যবহার করা হয়।
    • উদাহরণ: প্রোডাক্ট A এবং প্রোডাক্ট B তৈরি করতে যে পরিমাণ ব্যবহার হবে, সেগুলো ভেরিয়েবল x1 এবং x2 হিসেবে নির্ধারণ করা যেতে পারে।
  3. সীমাবদ্ধতা নির্ধারণ (Formulate the Constraints)
    • সমস্যার সাথে সম্পর্কিত শর্তাবলী বা সীমাবদ্ধতাগুলো গাণিতিকভাবে প্রকাশ করতে হবে। সীমাবদ্ধতাগুলোও সাধারণত লিনিয়ার ইনইক্যুয়ালিটি (অসাম্য) বা সমীকরণের আকারে থাকে।
    • উদাহরণ: যদি একটি কাঁচামালের সীমাবদ্ধতা থাকে, তবে সীমাবদ্ধতাটি হতে পারে:
      a1x1+a2x2b
      যেখানে, a1 এবং a2 হলো কাঁচামালের ব্যবহার এবং b হলো কাঁচামালের সর্বাধিক পরিমাণ।
  4. অ-বিষমতা শর্ত (Non-negativity Constraints)
    • বাস্তব সমস্যায় ভেরিয়েবলগুলোর মান শূন্য বা শূন্যের অধিক হতে হবে। তাই প্রতিটি ভেরিয়েবলের জন্য অ-বিষমতা শর্ত প্রয়োগ করা হয়:
      x10,x20,,xn0

উদাহরণ:

ধরা যাক, একটি কোম্পানি দুটি পণ্য উৎপাদন করে: প্রোডাক্ট A এবং প্রোডাক্ট B। প্রতিটি পণ্য থেকে লাভ হয় যথাক্রমে ৫ টাকা এবং ৪ টাকা। প্রতিটি পণ্যের জন্য কাঁচামাল ও শ্রমের সীমাবদ্ধতা রয়েছে।

  • লক্ষ্য ফাংশন: মোট মুনাফা সর্বাধিক করা।
    Z=5x1+4x2
  • সীমাবদ্ধতা:
    1. কাঁচামাল সীমাবদ্ধতা:
      2x1+3x2100
    2. শ্রমের সীমাবদ্ধতা:
      x1+2x280
  • অ-বিষমতা শর্ত:
    x10,x20

এইভাবে সমস্যাটির একটি পূর্ণাঙ্গ গাণিতিক মডেল তৈরি করা হলো, যা যোগাশ্রয়ী প্রোগ্রামের সমাধানে ব্যবহার করা যায়।

common.content_added_by
টপ রেটেড অ্যাপ

স্যাট অ্যাকাডেমী অ্যাপ

আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।

ভিডিও
লাইভ ক্লাস
এক্সাম
ডাউনলোড করুন
Promotion