Job

A tank is filled by three pipes with uniform flow. The first two pipes operating simultaneously fill the tank in the same time during which the tank is filled by the third pipe alone. The second pipe fills the tank 5 hours faster than the first pipe and 4 hours slower than the third pipe. The time required by the second and third pipe can fill a tank together?

(Pipe & Cistern)

dsuc.created: 2 years ago | dsuc.updated: 1 year ago
dsuc.updated: 1 year ago

Let, the first pipe can alone fill the tank in x hour

2nd and 3rd pipe will take (x-5) and (x - 9) hours to fill the tank.

According to the question

1x+1x-5=1x-9 =(x-5)+xx(x-5)=1x-9 =(2x-5) (x-9) =x(x-5) =2x2-18x-5x+45=x2-5x =x2-18x+45=0 =x2-15x-3x+45=0 =x(x-15)-3(x-15)=0 (x-15) (x-3)=0 Now x-15=0                     [x=3 is not acceptable] x=15 The first pipe will take 15 minutes to fill the tank.

The 2nd pipe can fill the tank in = 15 - 5 = 10 hours

And the 3 pipe can fill the tank in = 15 - 9 = 6 hours

2nd and 3rd pipe can fill in 1 hour = 110+16=3+530=830=415part

Now, 415 part of the tank is filled by 2nd and 3rd pipe in 1 hour 1 or complete part of the tank is filled by 2nd and 3rd pipe in = 154=3.75 hours 2nd and 3rd pipe can fill the tank in = 3 hours 45 minutes. (answer)

1 year ago

গণিত

.

Content added By
Content updated By
Promotion